一点要记得收藏我们的网址哦(www.5ijcw.com) —— 我爱教程网 。
  • 查资料

当前位置:我爱教程网知识频道教学设计数学教学设计九年级数学教学设计这道中考题的解法真多» 正文

这道中考题的解法真多

[09-28 20:10:18]   来源:http://www.5ijcw.com  九年级数学教学设计   阅读:8445

概要:及其对顶角所在的三角形都是非直角三角形,而且从已知条件中我们无法再找出与∠BPC相等的角,为了求出tan∠BPC的值,我们应该首当其充地构造∠BPC所在的直角三角形,于是过点C作CE⊥BD于E,至于过其它点作另一条辅助线,一是为了求出线段PD、BP的比值,从而顺利找出所构造的直角三角形中两直角边的关系,另外这也是由“递进型”中考题的特点(下一题要充分用到上一题的结论或解题思路)决定的.在求解过程中,我们发现PD=AD,于是∠BPC=∠APD=∠A,而∠A在直角三角形中,且正切值容易求出,于是把求tan&a
这道中考题的解法真多,标签:九年级数学教学设计案例,http://www.5ijcw.com
及其对顶角所在的三角形都是非直角三角形,而且从已知条件中我们无法再找出与∠BPC相等的角,为了求出tan∠BPC的值,我们应该首当其充地构造∠BPC所在的直角三角形,于是过点CCEBDE,至于过其它点作另一条辅助线,一是为了求出线段PDBP的比值,从而顺利找出所构造的直角三角形中两直角边的关系,另外这也是由“递进型”中考题的特点(下一题要充分用到上一题的结论或解题思路)决定的.在求解过程中,我们发现PD=AD,于是∠BPC=∠APD=∠A,而∠A在直角三角形中,且正切值容易求出,于是把求tan∠BPC转化为tanA,因此解答问题(2)只需作出与问题(1)类似的辅助线,而无需构造直角三角形,这也是我们在按照正常思路求tan∠BPC的过程中发现的巧妙解法.   问题(3)的设置比较巧妙,解答时要注意让条件“ADAOOB=1∶n”与问题(2)中的条件“OA=OB,且”发生联系,并根据问题(2)中结论猜想出问题(3)中的结论,我想这也是命题者的意图吧!

上一页  [1] [2] [3] 


关键字: Tag:九年级数学教学设计九年级数学教学设计案例教学设计 - 数学教学设计 - 九年级数学教学设计



上一篇:双曲线中的面积问题

《这道中考题的解法真多》相关文章

用户评论