一点要记得收藏我们的网址哦(www.5ijcw.com) —— 我爱教程网 。
  • 查资料

当前位置:我爱教程网知识频道教学设计数学教学设计九年级数学教学设计中考一元二次方程综合题例析» 正文

中考一元二次方程综合题例析

[09-28 20:10:25]   来源:http://www.5ijcw.com  九年级数学教学设计   阅读:8845

概要:,关于y的不等于组有实数解,则k的取值范围是______________________. 分析:因为方程有两实根,所以△=[2(k+1)]2-4k2≥0≥0,又因为关于y的不等式组 y>-4y<m有实数解,所以y一定介于-4与m之间,即m一定大于-4,因此m=-2(k+1)>-4,然后解不等式即可求出k的取值范围. 解:∵方程x2+2(k+1)x+k2=0有两实根,∴△=[2(k+1)]2-4k2≥0,解得k≥- 12;∵关于y的不等于组有实数解,∴m>-4又∵m=-2(k+1),∴-2(k+1)>-4,解得k<1.&ther
中考一元二次方程综合题例析,标签:九年级数学教学设计案例,http://www.5ijcw.com
,关于y的不等于组有实数解,则k的取值范围是______________________.   分析:因为方程有两实根,所以△=[2(k+1)]2-4k2≥0≥0,又因为关于y的不等式组 y>-4y<m有实数解,所以y一定介于-4与m之间,即m一定大于-4,因此m=-2(k+1)>-4,然后解不等式即可求出k的取值范围.   解:∵方程x2+2(k+1)x+k2=0有两实根,
  ∴△=[2(k+1)]2-4k2≥0,解得k≥- 12;
  ∵关于y的不等于组有实数解,∴m>-4
  又∵m=-2(k+1),
  ∴-2(k+1)>-4,解得k<1.
  ∴k的取值范围是得1>k≥-12.故填空答案:1>k≥-12.   点评:本题综合考查了根的判别式和根与系数的关系,在解不等式时一定要注意数值的正负与不等号的变化关系.   五、一元二次方程与概率综合   例5(2010年黄冈市)甲、乙两同学投掷一枚骰子,用字母p、q分别表示两人各投掷一次的点数.   (1)求满足关于x的方程有实数解的概率. (2)求(1)中方程有两个相同实数解的概率.   分析:(1)方程x2+px+q=0有实数解,则p2-4q≥0,把投掷骰子的36种p、q对应值,代入检验,找出符合条件的个数;(2)方程x2+px+q=0有相同实数解,则p2-4q=0,把投掷骰子的36种p、q对应值,代入检验,找出符合条件的个数.   :两人投掷骰子共有36种等可能情况,
  (1)其中使方程有实数解共有19种情况:
  p=6时,q=6、5、4、3、2、1;
  p=5时,q=6、5、4、3、2、1;
  p=4时,q=4、3、2、1;
  p=3时,q=2、1;
  p=2时,q=1;故其概率为
  (2)使方程有相等实数解共有2种情况:
  p=4,q=4;p=2,q=1;故其概率为  点评:本题考查一元二次方程根的判别式和概率关系,同时考查了学生的综合应用能力及推理能力.用到的知识点为:概率=所求情况数与总情况数之比;一元二次方程有实数根,判别式为非负数.   六、一元二次方程与几何知识综合   例6(2009年黄石市)三角形两边的长是3和4,第三边的长是方程的根,则该三角形的周长为(    ) A.14                   B.12                   C.12或14                 D.以上都不对   分析:易得方程的两根,那么根据三角形的三边关系,排除不合题意的边,进而求得三角形周长即可.   :解方程得:x=5或x=7.
当x=7时,3+4=7,不能组成三角形;
当x=5时,3+4>5,三边能够组成三角形.
∴该三角形的周长为3+4+5=12,故选B.   点评:本题主要考查三角形三边关系,注意在求周长时一定要先判断是否能构成三角形.   7 (2009年襄樊市)如图,在中,是一元二次方程的根,则的周长为(      )   A.     B.     C.     D.                        分析:先解方程求得a,再根据勾股定理求得AB,从而计算出的周长即可.   :∵a是一元二次方程x2+2x-3=0,
  ∴(x-1)(x+3)=0,即x=1或-3,
  ∵AE=EB=EC=a,
  ∴a=1,
  在Rt△ABD中,AB==

上一页  [1] [2] [3]  下一页


关键字: Tag:九年级数学教学设计九年级数学教学设计案例教学设计 - 数学教学设计 - 九年级数学教学设计



上一篇:圆周角第一课时教学设计

《中考一元二次方程综合题例析》相关文章

用户评论