一次函数研究性学习设计
教师活动:
引导学生分析思考解决由图象到解析式转化的方法过程,从而总结归纳两者转化的一般方法.
学生活动:
在教师指导下经过独立思考,研究讨论顺利完成转化过程.概括阐述一次函数解析式与图象转化的一般过程.
活动过程及结论:
分析:求一次函数解析式,关键是求出k、b值.因为图象经过两个点,所以这两点坐标必适合解析式.由此可列出关于k、b的二元一次方程组,解之可得.
设这个一次函数解析式为y=kx+b.
因为y=k+b的图象过点(3,5)与(-4,-9),所以
解之,得
故这个一次函数解析式为y=2x-1。结论:
像这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法.
练习:
1.已知一次函数y=kx+2,当x=5时y的值为4,求k值.
2.已知直线y=kx+b经过点(9,0)和点(24,20),求k、b值.
3. 生物学家研究表明,某种蛇的长度y (CM)是其尾长x(CM)的一次函数,当蛇的尾长为6CM时, 蛇的长为45.5CM; 当蛇的尾长为14CM时, 蛇的长为105.5CM.当一条蛇的尾长为10 CM时,这条蛇的长度是多少?
4.教科书第35页第6题.
解答:
1.当x=5时y值为4.
即4=5k+2,∴k=
2.由题意可知:
解之得,
作业: 教科书第35页第5,7题.
备选题:
1. 已知一次函数y=3x-b的图象经过点P(1,1),则该函数图象必经过点( )
A.(-1,1) B.(2,2) C.(-2,2) D.(2,-2)
2. 若一次函数y=2x+b的图像与坐标轴围成的三角形的面积是9,求 b的值.
3.点M(-2,k)在直线y=2x+1上,求点M到x轴的距离d为多少?
关键字: Tag:八年级数学教学设计,八年级数学教学设计案例,教学设计 - 数学教学设计 - 八年级数学教学设计
上一篇:一次函数复习课教学设计
《一次函数研究性学习设计》相关文章
- 一次函数研究性学习设计
- › 八年级数学上册 一次函数(3)——待定系数法 教学案
- › 一次函数研究性学习设计
- › 一次函数复习课教学设计
- 在百度中搜索相关文章:一次函数研究性学习设计
- 在谷歌中搜索相关文章:一次函数研究性学习设计
- 在soso中搜索相关文章:一次函数研究性学习设计
- 在搜狗中搜索相关文章:一次函数研究性学习设计